Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 259(5): 104, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551672

RESUMO

MAIN CONCLUSION: The post-transcriptional gene regulatory pathway and small RNA pathway play important roles in regulating the rapid and long-term response of Rhododendron moulmainense to high-temperature stress. The Rhododendron plays an important role in maintaining ecological balance. However, it is difficult to domesticate for use in urban ecosystems due to their strict optimum growth temperature condition, and its evolution and adaptation are little known. Here, we combined transcriptome and small RNAome to reveal the rapid response and long-term adaptability regulation strategies in Rhododendron moulmainense under high-temperature stress. The post-transcriptional gene regulatory pathway plays important roles in stress response, in which the protein folding pathway is rapidly induced at 4 h after heat stress, and alternative splicing plays an important role in regulating gene expression at 7 days after heat stress. The chloroplasts oxidative damage is the main factor inhibiting photosynthesis efficiency. Through WGCNA analysis, we identified gene association patterns and potential key regulatory genes responsible for maintaining the ROS steady-state under heat stress. Finally, we found that the sRNA synthesis pathway is induced under heat stress. Combined with small RNAome, we found that more miRNAs are significantly changed under long-term heat stress. Furthermore, MYBs might play a central role in target gene interaction network of differentially expressed miRNAs in R. moulmainense under heat stress. MYBs are closely related to ABA, consistently, ABA synthesis and signaling pathways are significantly inhibited, and the change in stomatal aperture is not obvious under heat stress. Taken together, we gained valuable insights into the transplantation and long-term conservation domestication of Rhododendron, and provide genetic resources for genetic modification and molecular breeding to improve heat resistance in Rhododendron.


Assuntos
MicroRNAs , Rhododendron , Transcriptoma/genética , Rhododendron/genética , Rhododendron/metabolismo , Ecossistema , Resposta ao Choque Térmico/genética , MicroRNAs/genética , Perfilação da Expressão Gênica
2.
J Environ Manage ; 344: 118512, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384992

RESUMO

Poor regeneration of natural vegetation is a major factor contributing to the degradation of tropical coral islands. Soil seed banks (SSB) are important for maintaining the resilience of plant communities. However, the community characteristics and spatial distribution of SSBs and the controlling factors along human disturbance on coral islands are unclear. To fill this gap, we measured the community structure and spatial distributions of forest SSBs on three coral islands in the South China Sea, with varying degrees of human disturbance. The results showed that strong human disturbance increased the diversity, richness, and density of SSBs, as well as increased the richness of invasive species. With increased human disturbance, the heterogeneity pattern of SSBs spatial distribution changed from difference between forest east and west to forest center and edge. The similarity between the SSBs and above-ground vegetation also increased, and the distribution of invasive species extended from the edge to the central area of the forests, demonstrating that human disturbance limited the outward dispersal of seeds of resident species but increased the inward dispersal of seeds of invasive species. Interaction between soil properties, plant characteristics, and human disturbance explained 23-45% of the spatial variation of forest SSBs on the coral islands. However, human disturbance reduced the correlations of plant communities and spatial distribution of SSBs with soil factors (i.e., available phosphorus and total nitrogen) and increased the correlations of the community characteristics of SSB with landscape heterogeneity index, road distance, and shrub and litter cover. Resident seed dispersal on tropical coral islands might be enhanced by reducing building height, constructing buildings in down-wind locations, and preserving corridors that support animal movement among forest fragments.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Solo/química , Banco de Sementes , Efeitos Antropogênicos , Ilhas , Florestas , Plantas , Sementes , Espécies Introduzidas
3.
J Environ Manage ; 280: 111647, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33243623

RESUMO

Soil organisms play essential roles in maintaining multiple ecosystem processes, but our understanding of the dynamics of these communities during forest succession remains limited. In this study, the dynamics of soil organism communities were measured along a 3-step succession sequence of subtropical forests (i.e., a conifer forest, CF; a mixed conifer and broad-leaved forest, MF; and a monsoon evergreen broad-leaved forest, BF). The eco-exergy evaluation method was used as a complement to the classic community structure index system to reveal the holistic dynamics of the bio-thermodynamic health of soil organism communities in a forest succession series. Association between the self-organization of soil organisms, soil properties, and plant factors were explored through redundancy analyses (RDA). The results indicated that the biomass of soil microbes progressively increased in the dry season, from 0.75 g m-2 in CF to 1.75 g m-2 in BF. Microbial eco-exergy showed a similar pattern, while the community structure and the specific eco-exergy remained constant. Different trends for the seasons were observed for the soil fauna community, where the community biomass increased from 0.72 g m-2 to over 1.97 g m-2 in the dry season, but decreased from 3.94 g m-2 to 2.36 g m-2 in the wet season. Faunal eco-exergies followed a similar pattern. Consequently, the average annual biomass of the soil faunal community remained constant (2.17-2.39 g m-2) along the forest succession sequence, while the significant seasonal differences in both faunal biomass and eco-exergy observed at the early successional stage (CF) were insignificant in the middle and late forest successional stages (MF and BF). Both the dynamics of soil microbes and soil fauna were tightly correlated with tree biomass and with soil physicochemical properties, especially soil pH, moisture, total nitrogen, nitrate nitrogen, and organic matter content.


Assuntos
Ecossistema , Solo , Biomassa , China , Florestas , Microbiologia do Solo , Termodinâmica , Árvores
4.
Sci Total Environ ; 724: 138183, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32408446

RESUMO

To assess the effects of nitrogen deposition on forest plants, researchers have conducted many nitrogen-addition experiments. Most of these experiments, however, failed to fully simulate atmospheric nitrogen deposition because they failed to assess interception of nitrogen deposition by the forest canopy. Here, we used transcriptomics, proteomics, and metabolomics to compare the effects of understory nitrogen addition (UAN), canopy nitrogen addition (CAN), and a control (no nitrogen addition) on carbon and nitrogen metabolism in leaves of Psychotria rubra, a dominant subtropical understory plant species in evergreen broad-leaved forests in South China. We first established a reference P. rubra transcriptome via RNA-seq and obtained a total of 93,986 unigenes from de novo assembly. Next, we quantitatively investigated the proteome and metabolome in leaves, and identified 4021 proteins and 562 metabolites. Under the CAN treatment and relative to the control, 36 genes were up-regulated and 23 were down-regulated, and we identified 46 up-regulated proteins and 49 down-regulated proteins. Under the UAN treatment and relative to the control, 1525 genes were up-regulated and 224 genes down-regulated, and we identified 35 up-regulated proteins and 71 down-regulated proteins. These differentially expressed genes and proteins were related to photosynthesis, amino acid metabolism, and flavonoid biosynthesis. Accordingly, 15 differentially accumulated metabolites in response to CAN and 20 in response to UAN were found; these differentially accumulated metabolites included 4 amino acids and 3 flavonoids. Taken together, our results show that the UAN treatment had a greater effect on photosynthesis, amino acid metabolism, and flavonoid biosynthesis than the CAN treatment. Most importantly, the results indicate that understory application of nitrogen in experiments may incorrectly estimate the effects of nitrogen deposition on nitrogen and carbon utilization by P. rubra and perhaps by other understory woody plants in the evergreen broad-leaved forests in South China as well.


Assuntos
Nitrogênio , Psychotria , Carbono , China , Florestas , Árvores
5.
Sci Total Environ ; 727: 138738, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32334237

RESUMO

Simulated nitrogen deposition experiments in forests have mainly used understory nitrogen application, i.e., they failed to consider how canopy interception may alter the effects of nitrogen deposition on forest plants. This study used canopy addition of nitrogen, understory addition of nitrogen, and no-nitrogen addition control to study the effect of nitrogen deposition on the allocation of carbon assimilation products of representative woody species in an evergreen broad-leaved forest. Results showed that the maximum photosynthetic rate (Asat) of Blastus cochinchinensis (a shrub), Ardisia quinquegona (a small tree), and Schefflera octophylla (a small tree) were significantly higher, but Asat of Schima superba (a large tree) was significantly lower under canopy addition of nitrogen than under the control. Canopy and understory additions of nitrogen did not change Asat of Lasianthus chinensis (a shrub). Compared with the control, leaf chemical compositions of these plants were differentially changed by canopy and understory additions of nitrogen. These changes were accompanied by a significant increase in construction cost of A. quinquegona, S. octophylla, and S. superba under canopy addition of nitrogen and of L. chinensis, A. quinquegona, and S. superba under understory addition of nitrogen. The payback time was significantly shorter for B. cochinchinensis, A. quinquegona, and S. octophylla but was significantly longer for S. superba under canopy addition of nitrogen than under the control. In contrast, the payback time was significantly shorter for B. cochinchinensis and A. quinquegona under understory addition of nitrogen than under the control. Correlation analyses showed that the changes in protein and structural carbohydrate contents helped explain the changes in payback time. In summary, nitrogen deposition may increase carbon assimilation and allocation in shrubs and small trees, and large trees may require a longer period to increase carbohydrates, which may help explain the ongoing transformation of evergreen broad-leaved forests into shrublands.


Assuntos
Florestas , Nitrogênio , Folhas de Planta , Árvores , Madeira
6.
Sensors (Basel) ; 20(7)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224939

RESUMO

Image mosaicking which is a process of constructing multiple orthoimages into a single seamless composite orthoimage, is one of the key steps for the production of large-scale digital orthophoto maps (DOM). Seamline determination is one of the most difficult technologies in the automatic mosaicking of orthoimages. The seamlines that follow the centerlines of roads where no significant differences exist are beneficial to improve the quality of image mosaicking. Based on this idea, this paper proposes a novel method of seamline determination based on road probability map from the D-LinkNet neural network for urban image mosaicking. This method optimizes the seamlines at both the semantic and pixel level as follows. First, the road probability map is obtained with the D-LinkNet neural network and related post processing. Second, the preferred road areas (PRAs) are determined by binarizing the road probability map of the overlapping area in the left and right image. The PRAs are the priority areas in which the seamlines cross. Finally, the final seamlines are determined by Dijkstra's shortest path algorithm implemented with binary min-heap at the pixel level. The experimental results of three group data sets show the advantages of the proposed method. Compared with two previous methods, the seamlines obtained by the proposed method pass through the less obvious objects and mainly follow the roads. In terms of the computational efficiency, the proposed method also has a high efficiency.

7.
Sci Rep ; 10(1): 952, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969602

RESUMO

We compared community composition and co-occurrence patterns of phyllosphere fungi between island and mainland populations within a single plant species (Mussaenda kwangtungensis) using high-throughput sequencing technology. We then used 11 microsatellite loci for host genotyping. The island populations differed significantly from their mainland counterparts in phyllosphere fungal community structure. Topological features of co-occurrence network showed geographic patterns wherein fungal assemblages were less complex, but more modular in island regions than mainland ones. Moreover, fungal interactions and community composition were strongly influenced by the genetic differentiation of host plants. This study may advance our understanding of assembly principles and ecological interactions of phyllosphere fungal communities, as well as improve our ability to optimize fungal utilization for the benefit of people.


Assuntos
Ecossistema , Interações entre Hospedeiro e Microrganismos , Micobioma/genética , Rubiaceae/genética , Rubiaceae/microbiologia , China , DNA de Plantas , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...